Errata for Acoustics: Sound Fields and Transducers by Leo Beranek & Tim Mellow, June 2014 to Dec 2016.

Updated October 2, 2018

Cover images: Replace “Wave\textregistered” with “Wave®”.

P. 4, 2nd line from top: replace “lead” with “led”.

P. 10, penultimate sentence: Replace “Mathematics” with “Mathematica” and “double-struck i” with “double-struck i”.

P. 18, Replace Eq. (1.23) with “\(C_n = 10 \log_{10} (f_b - f_a) \) dB,”.

P. 18, Replace Eq. (1.24) with “\(L_n = C_n + S_n \)”,.

P. 29, in Eq. (2.27): Replace “S” with “\(S(x) \)”.

P. 30, Eq. (2.33): Replace “\(\partial x \)” with “\(\partial t \)”.

P. 31: Delete last sentence before Section 2.3.2.

P. 31, Eq. (2.38): replace “\(p_n \)” with “\(p \)”.

P. 34, Last paragraph: Replace “both \(x \) and [see Eq. (2.46)]” with “both \(x \) and \(t \) [see Eq. (2.46)]”.

P. 37, 8th line after heading 2.4: Replace “\(u_0 \) at \(x = 0 \)” with “\(\tilde{u}_0 \) at \(x = l \)”.

P. 38: Replace Eq. (2.57) with

\[
SWR = \frac{Z_L}{\rho_0 c} = \frac{1 + |\Gamma|}{1 - |\Gamma|}.
\]

P. 38: Replace equation following Eq. (2.57) with

\[
\alpha = 1 - |\Gamma|^2.
\]

\[
\begin{array}{cc}
0 & 0 \\
0 & \infty \\
-1 & -1 \\
2 & 0
\end{array}
\]

P. 39, 2nd column of Table 2.1: Replace \(\infty \) with \(-1 \).

P. 40, 3rd line from top: Replace “Fig. 9.6 and Fig. 9.7” with “Figs. 10.6 and 10.7”.

P. 41, 7th and 8th line after Eq. (2.67): “\(l - n\lambda/2 \)” should be italic “\(l - n\lambda/2 \)” in both instances.
P. 52, Eq. (2.109): Replace “s” or “rayls” with “rayls”.

P. 55, 6th line after Eq. (2.115): Replace “three equations for each ordinate as follows” with “three equations, one for each ordinate as follows”

P. 57, 1st line: Replace “W_n(w)Φ(ϕ)Z(z)” with “W_n(w)Φ_n(ϕ)Z(z)”.

P. 59, Eq. (2.140): Replace “arctan” with “arccot”.

P. 60, Eqs. (2.149) and (2.156), Replace “Z_mn” with “Z_{mn}”.

P. 60, Eq. (2.153): Insert “j” before “ϕ_n”.

P. 62, Eq. (2.160): Replace “Z_m(ϕ)” with “Z_{mn}(θ)”.

P. 62, 1st line after Eq. (2.160): Replace “P_m(ϕ)” with “P_m(ϕ)”.

P. 62, 2nd line after Eq. (2.160): Replace “P_m(ϕ)” with “P_m(ϕ)”.

P. 62, Eqs. (2.163) and (2.164): Exchange “h_n(1)” and “h_n(2)”.

P. 62, Fig. 2.22: Replace with

P. 63, 3rd line of paragraph [3]: Replace “m3” with “m3”.

P. 63, 4th line of paragraph [3]: Replace “n” with “n”.

P. 72, 2nd line after Eq. (3.3): Replace “SFig. 3.1” with “Fig. 3.1”.

P. 78, Fig. 3.13: Add “3” and “3”.

P. 84, Eq. (3.20): Replace “M_l(l_1 + l_2)^2” with “M_l(l_1 + l_2)^2”.

![Graph of Legendre Polynomials](image-url)
P. 85, 9th line from top: Replace “\(\rho \)” with “\(\tilde{\rho} \)”.

\[
\frac{f(t)}{S} = \frac{M_M}{S} \frac{d(u(t)S)}{dt} = p(t) = \frac{M_M}{S^2} \frac{dU(t)}{dt}
\]

P. 86, Eq. (3.22): Replace “\(S \)” with “\(S^2 \)” in last term:

\[
p(t) = M_A \frac{dU(t)}{dt}
\]

P. 88, 4th and 5th lines from top: Replace “Chapter 5” with “Chapter 4”.

P. 89, 4th line after Eq. (3.26): Replace “\(G = G_mS^2 \)” with “\(G = G_MS^2 \)”.

P. 92, 4th eqn. from top: Replace “\(\tilde{p}_2 = (R_{A1} + j\omega M_{A2})\tilde{U}_2 + \tilde{p}_3 \)” with “\(\tilde{p}_2 = (R_{A1} + j\omega M_{A2})\tilde{U}_2 + \tilde{p}_3 \)”.

P. 95, 5th line from top: Replace “\(e \)” with “\(\tilde{e} \)”.

P. 95, 6th line from top: Replace “\(i \)” with “\(\tilde{i} \)”.

P. 95, 7th line from top: Insert “\(\tilde{f} \)” after “a force”.

P. 95, 2nd line after Eq. (3.27b): Replace “\(i \)” with “\(\tilde{i} \)”.

P. 96, last word before Eq. (3.28a): Replace “rewrite” with “write”.

P. 106, Caption to Fig. 3.42: Replace “Fig. 3.40” with “Fig. 3.41”.

P. 106, Eq. (3.44): Replace “\(e \)” with “\(\tilde{e} \)”.

P. 107, 2nd line after Eq. (3.45): Replace “Eqs. (3.39) and (3.40)” with “Eqs. (3.44) and (3,45)”.

P. 116, 4th line from bottom: Replace “farad” with “F”.

P. 120, 1st line: Replace “Chapter 6” with “Chapter 7”.

P. 122, between Eqs. (4.10) and (4.11): Insert “Thus”.

P. 122, between Eqs. (4.11) and (4.12): Replace “Thus” with “For \(\ell < \lambda/10 \), Eq. (4.9) becomes”.

P. 123, 3rd and 4th lines after Fig. 4.2: Replace “\(M/A \) in (b), \(C_A/3 \) in (d)” with “\(C_A/3 \) in (b), \(M/A \) in (d)”.

P. 126, 2nd line after Fig. 4.4: Replace “\(Z \)” with “\(R \)”.

P. 128, After Eq. (4.21), add “where \(M_M = \rho_lwt \) = mass of air in the slit in kg”.

P. 136: 1st line from top: Replace “The design impedance is equal to” with “The \(Q \) value is given by”.

P. 137, 9th line from top: Replace “baffles, horns, and noise sources” with “baffles, and horns”.

P. 106, Caption to Fig. 3.42: Replace “Fig. 3.40” with “Fig. 3.41”.

P. 106, Eq. (3.44): Replace “\(e \)” with “\(\tilde{e} \)”.

P. 107, 2nd line after Eq. (3.45): Replace “Eqs. (3.39) and (3.40)” with “Eqs. (3.44) and (3,45)”.

P. 116, 4th line from bottom: Replace “farad” with “F”.

P. 120, 1st line: Replace “Chapter 6” with “Chapter 7”.

P. 122, between Eqs. (4.10) and (4.11): Insert “Thus”.

P. 122, between Eqs. (4.11) and (4.12): Replace “Thus” with “For \(\ell < \lambda/10 \), Eq. (4.9) becomes”.

P. 123, 3rd and 4th lines after Fig. 4.2: Replace “\(M/A \) in (b), \(C_A/3 \) in (d)” with “\(C_A/3 \) in (b), \(M/A \) in (d)”.

P. 126, 2nd line after Fig. 4.4: Replace “\(Z \)” with “\(R \)”.

P. 128, After Eq. (4.21), add “where \(M_M = \rho_lwt \) = mass of air in the slit in kg”.

P. 136: 1st line from top: Replace “The design impedance is equal to” with “The \(Q \) value is given by”.

P. 137, 9th line from top: Replace “baffles, horns, and noise sources” with “baffles, and horns”.
P. 142: Replace Eq. (4.73) with
\[I = \frac{1}{\sqrt{2}} \rho_0 \frac{f^2 \rho_0}{4r^2c} \text{ W/m}^2. \]

P. 144, Eqs. (4.78) and (4.83): The tilde is missing from \(\tilde{p}(r, \theta) \).

P. 146, 1st line after Eq. (4.84): Replace “Eq. (52)” with “Eq. (51)”.

P. 153, 1st line after Eq. (4.103): Replace “Eq. (155)” with “Eq. (154)”.

P. 153, 1st line after Eq. (4.107): Replace “Fig. 4.20a and Fig. 4.20b” with “Fig. 4.20c and Fig. 4.20d”.

P. 153, 5th line after Eq. (4.107): Replace “(a) and (b)” with “(a) and (c)”.

P. 155, Eq. (4.117), Replace “\(p_d \)” with “\(\tilde{p}_d \)”.

P. 157, 11th line after Eq. (4.120): Replace “see Fig. 4.7” with “see Fig. 4.22”.

P. 157, 2nd line from bottom: Replace “see Sec. 12.10” with “see Sec. 13.10”.

P. 158, 2nd line from bottom: Replace “where the term \(\tilde{U}_0 \Delta z_0 \) has been replaced with the unknown coefficient \(\tilde{A}_0 = \tilde{U}_0 \Delta z_0 \)” with “where the term \(\tilde{U}_0 b \) has been replaced with the unknown coefficient \(\tilde{A}_0 = \tilde{U}_0 b \)”.

P. 159, Eq. (4.128): Replace “\(i \)” with “\(j \)”.

P. 161: Replace Eq. (4.136) with
\[
\tilde{F} = 2R^2 \int_0^{2\pi} \int_0^\frac{\pi}{2} \tilde{p}(R, \theta) \cos \theta \sin \theta d\theta d\varphi \\
= \rho_0c\tilde{U}_0 \frac{2}{3} \frac{jkR(1 + jkR)}{2 - k^2R^2 + 2jkR} e^{-jkR}.
\]

P. 161: Replace equation Eq. (4.137) with
\[
Z_s = R_s + jX_s = \frac{\tilde{F}}{\tilde{U}_0 e^{-jkR}} \\
= \frac{2}{3} \frac{jkR(1 + jkR)}{2 - k^2R^2 + 2jkR} \rho_0c \\
= \frac{2}{3} \frac{k^4R^4 + j(k^3R^3 + 2kR)}{k^4R^4 + 4} \rho_0c.
\]

P. 162, Replace Fig. 4.27 with
P. 165, 4th line after Eq. (4.142): Replace “Eq. (12.271)” with “Eq. (13.271)”.

P. 165, 5th and 6th lines after Eq. (4.142): Replace “Eqs. (12.101) and (12.235)” with “Eqs. (13.101) and (13.235)”.

P. 166, Replace Fig. 4.30 with

P. 166, Add to caption of Fig. 4.30 “These are plotted using Eq. (4.143), which is divided by 2 in the case of the piston and oscillating sphere in free space because they radiate from both sides and hence radiate twice the power.

P. 170, Replace Fig. 4.34 with
P. 170, 2nd line after heading 4.19: Replace “see Fig. 12.3” with “see Fig. 13.3” and replace “Eqs. (12.116), (12.117), and (12.118)” with “Eqs. (13.116), (13.117), and (13.118)”.

P. 175, 3rd line after heading 4.20: Replace “Eqs. (12.249), (12.250), and (12.251)” with “Eqs. (13.248), (13.249), and (13.250)”.

P. 177: Delete 1st sentence after Fig. 4.39.

P. 180, Just before Eq. (4.175): Replace “10” with “[10]”.

P. 181, Just before Eq. (4.178): Replace “11” with “[11]”.

P. 184, Just before Eq. (4.201): Replace “12” with “[12]”.

P. 186, Last line before Eq. (4.218): Replace “Eq. (2.64)” with “Eq. (3.64)”.

P. 187, 6th line after Eq. (4.220): Replace “Eqs. (2.74) to (2.77)” with “Eqs. (3.74) to (3.77)”.

P. 190, Eq. (4.244): Replace “Cs” with “Ci”.

P. 194, 1st line after Eq. (4.252): Replace “regime #3” with “Eq. (4.251)”.

P. 195, 1st line: Replace “Eq. (49)” with “Eq. (48)”.

P. 195, 1st line after Eq. (4.258): Replace “defined in 1 to 3” with “those for an open-ended tube”.

P. 195, 4th line after Eq. (4.259): Replace “light grey” with “dashed”.

P. 197, Eq. (4.260) and Eq. (4.261): Replace “ωκ” with “ωr”.

P. 204, 1st line after Eq. (5.8): Replace “Eq. (2.107)” with “Eq. (2.89)”.
P. 221, 4th line from top: Replace “Fig. 5.20” with “Fig. 5.21b”.

P. 225, 1st line after Eq. (5.54): Replace “[4]” with “[3]”.

P. 227, last line before heading “Performance”: Replace “\(f_r = \tilde{p}_r S \)” with “\(\tilde{f}_r = \tilde{p}_R S \)”.

P. 230, 2nd line after heading 5.8: Replace “p. 208” with “p. 206”.

P. 231: Replace Fig 5.31 with

![Diagram](image)

P. 234, Eq. (5.81): Replace “\(\Delta l = l + 3a/\pi \)” with “\(\Delta l = l + \pi a/4 \)”.

P. 235, 1st line after Eq. (5.85): Replace “[3]” with “[1]”.

P. 236, 5th line after Eq. (5.94): Replace “Chapter 12” with “Chapter 13”.

P. 236, 2nd line after Eq. (5.95): Replace “180°degree” with “180°”.

P. 238, Eq. (5.108): Replace “\(l + \frac{3a}{\pi} \)” with “\(l + \frac{\pi a}{4} \)”.

P. 239, Table 5.2, 2nd column: Replace “D” with “d”.

P. 240, Delete all of reference “[3]” and make reference “[4]” into reference “[3]”.

P. 247, Fig. 6.4a: Replace “L” with “Le”.

P. 247, Caption to Fig. 6.4: Replace “9R_MK2” with “R_MK2”.

P. 269: Replace Eq. (6.90) with

\[
E_g \approx 100 \frac{2B^2S_{D}^2\rho_0}{\pi^2\kappa^2w^2V_x^2}, \quad 2f_0 < f < \frac{c}{4\pi a}, \quad M'_{MS} \approx M_{MC}
\]

P. 269, 4th line before Eq. (6.91): Replace “size of the magnet \(V_G \) is directly related to that of the magnetic gap \(V_G \)” with “size of the magnet \(V_M \) is directly related to that of the magnetic gap \(V_G \)”.

P. 271, Fig. 6.14: Replace “SPL” with “re reference pressure”.

P. 274, 9th line from top: Replace “289” with “285”.

P. 274, 12th line from top: Replace “Fig. 12.24” with “Fig. 12.23”.

P. 275, 7th line from top: Replace “the equations for maximum power available efficiency” with “Eqs. (4.65) and (4.66) for an omnidirectional source”.

P. 275, 10th line from top: Replace “power-available response” with “efficiency response”.

P. 275, 12th line from top: Replace “power-available-efficiency” with “efficiency”.

P. 275, Eq. (6.95): Replace “log_{10} 4\pi r^2” with “10 \log_{10} 4\pi r^2”.

P. 275, 1st line after Eq. (6.95): Replace “I_{ax} = p_{ax} 2^2” with “I_{ax} = \left| p_{ax} \right|^2 / \rho_0 c”.

P. 275, Eq. (6.96): Replace “log_{10} 4\pi r^2” with “10 \log_{10} 4\pi r^2”.

P. 277, 1st line after Eq. (6.100): Replace “zeros” with “zeros”.

P. 282, 2nd line before Table 6.3,: Replace “[see (7) in Fig. 6.1]” with “[see (9) in Fig. 6.1]”.

P. 293, Eq. (7.1): Replace “\bar{U}_0” with “\left| \bar{U}_0 \right|”.

P. 296, end of 5th line from top: Replace “37” with “[37]”.

P. 299, 2nd line after heading “Values of the mechanical-circuit elements”: Replace “Part XVIII” with “Part XIX”.

P. 305, last sentence before Eq. (7.9): Replace “total volume the absorbent” with “total volume of the absorbent”.

P. 306: Delete “\alpha is the real part of the propagation coefficient”.

P. 306: Delete “\beta is the imaginary part of the propagation coefficient”.

P. 311, 2nd line after Eq. (7.27): Replace “[38]” with “[38]”.

P. 313, 3rd line after Eq. (7.33): Delete “magnitude of the rms”.

P. 314, Replace Eq. (7.38) with

\[D(0) = \frac{1-2(ka/\sqrt{5})^2 + j2(ka/\sqrt{5})}{1-(ka/\sqrt{5})^2 + j(ka/\sqrt{5})} \]

P. 314, Replace Eq. (7.39) with
\[p(r) = \frac{f \rho_0 |U|}{2r} \sqrt{\frac{(5-2k^2a^2)^2 + 20k^2a^2}{(5-k^2a^2)^2 + 5k^2a^2}}. \]

P. 314, 5th line after Eq. (7.39): Replace “Sec. 7.24” with “Sec. 7.20”.

P. 319, Eq. (7.56): Replace “Q_{ES}” with “Q_{Re}” and “\omega_i” with “\omega_k”.

P. 320, last equation: Replace “M_{AD} + M_{A1}” with “M_{AD} + M_{A1} + M_{AB}”.

P. 323, 2nd line after 3rd equation: Replace “R_f d is the flow resistance” with “R_f is the flow resistance”.

P. 324, 2nd equation: Replace “30” with “30.5”.

P. 330, 3rd line from bottom: Replace “l is the length of the tube” with “t is the length of the tube”.

P. 343, last sentence: Replace “series branch” with “mechanical or driver part”.

P. 345, last line before 4th equation: Replace “p. 336” with “p.334”.

P. 356: Replace Eq. (7.119) with

\[
\tilde{u}_z(x, y, l_z) = \frac{2}{k} \tilde{u}_0 \sum_{m=0}^{\infty} \sum_{n=0}^{\infty} k \rho_0 c \cos(k_m l_z) + jk_m Z_s \sin(k_m l_z) \\
\times \int_0^{l_z} \cos(m \pi x / l_x) \cos(p \pi y / l_y) dx \int_0^{l_z} \cos(n \pi y / l_y) \cos(q \pi x / l_x) dy \\
= \tilde{u}_0 \int_{(l_z - \eta_1)/2}^{(l_z + \eta_1)/2} \cos(p \pi x / l_x) dx \int_{(l_z - \eta_1)/2}^{(l_z + \eta_1)/2} \cos(q \pi y / l_y) dy
\]

P. 357: Replace Eq. (7.123) with

\[
\int_{(l_z - \eta_1)/2}^{(l_z + \eta_1)/2} \cos(n \pi y / l_y) dy = \begin{cases}
\frac{2l_z}{n\pi} \cos \left(\frac{n \pi \eta_1}{l_y} \right) \sin \left(\frac{n \pi \eta_1}{2l_y} \right), & n = 0 \\
\frac{2l_z}{n\pi} \cos \left(\frac{n \pi \eta_1}{l_y} \right) \sin \left(\frac{n \pi \eta_1}{2l_y} \right), & n = 1, 2, \cdots
\end{cases}
\]

P. 357: Replace Eq. (7.128) with

\[
Z_{11} = \frac{1}{-\tilde{u}_0} \int_{(l_z - \eta_1)/2}^{(l_z + \eta_1)/2} \int_{(l_z - \eta_1)/2}^{(l_z + \eta_1)/2} \tilde{p}(x, y, l_z) dy dx
\]

P. 359, last line before equation: Replace “Eq. (6.33)” with “Eq. (6.34)’’.

P. 359: Replace equation with \[SPL_{\text{max}} = 20 \log_{10} \left(\frac{1}{rc \times 20 \times 10^{-6}} \sqrt{\frac{Z_{\text{nom}} W_{\text{max}} 2 \pi^2 V_{AS} \rho_0}{R_e Q_{ES}}} \right) \text{ dB SPL @ 1 m}. \]
P. 360, 3rd line from top: Replace “Eq. (6.15)” with “Eq. (7.101)”.

P. 360: Replace 1st equation with

\[\eta_{\text{max}} = \frac{1}{S_D C} \sqrt{\frac{Z_{\text{nom}} W_{\text{max}} V_{A5}}{R_E Q E S \pi s \rho_0}} \]

P. 360: Replace last equation with “\(M_{A2} = 0.2026 \rho / a_T \)”.

P. 362, 3rd line before heading 7.19.1.3: Replace “Fig. 7.5” with “Fig. 7.6”.

P. 363, Eq. (7.134): Replace “\(r \tilde{U} \sim \tilde{p} \tilde{a} \tilde{g} \)” with “\(T \tilde{U} \sim \tilde{p} \tilde{a} \tilde{g} \)”.

P. 364, 4th line after heading 7.19.1.4: Replace “\(\tilde{V}_D \)”, “\(\tilde{V}_C \)” and “\(\tilde{V}_e \)” with “\(\tilde{U}_D \)”, “\(\tilde{U}_C \)” and “\(\tilde{U}_e \)”, respectively.

P. 369, 1st equation: Replace “\(\begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \)” with “\(\begin{bmatrix} a_{22} & a_{12} \\ a_{21} & a_{11} \end{bmatrix} \)”.

P. 369, 5th equation: Replace “\(a_{12} \)” with “\(a_{22} \)”.

P. 373, 4th line from top: Replace “\(\tilde{r}_g = a_{21} \tilde{p}_q \)” with “\(\tilde{r}_g = a_{12} \tilde{p}_q \)” and “\(\tilde{p}_o = \tilde{e}_g / a_{11} \)” with “\(\tilde{p}_o = \tilde{e}_g / a_{11} \)”.

P. 375, Fig. 7.46e:

\[H_S(s) = \frac{s^5}{\left(s^2 + \frac{2}{\sqrt{2}} \omega_b s + \omega_b^2 \right) \left(s^2 + \frac{2}{\sqrt{2}} \omega_b s + \omega_b^2 \right) \left(s + \omega_b \right)} \]

P. 379, 4th line before heading “4th-order high-pass filter with a series capacitor and shunt inductor”: Replace “\(Q_M \)” with “\(Q_C \)”. Also, in 1st line before heading: Replace “\(Q_M \)” with “\(Q_C \)”.

P. 383, 1st line after 2nd equation: Replace “low frequencies to the high ones” with “low frequencies relative to the high ones”.

P. 395, 1st line from top: Replace “\(- \zeta a \)” with “\(- \zeta \sigma \)”.

P. 396, 5th line after Eq. (8.4), Replace “\(\mu \) is velocity coefficient in N·s/m²” with “\(\mu \) is viscosity coefficient in N·s/m² [see Eq. (4.23)]”.

P. 397, last word before heading 8.5: Replace “interesting” with “informative”.

P. 399, last line before Eq. (8.11): Replace “[11]” with “[9]”.

P. 399, Eq. (8.11): Delete “\(\omega_1 \)”.

P. 399, 8th line after Eq. (8.11): Replace “[10]” with “[9]”.

P. 399, final paragraph: Replace “The circuit for an electret microphone shown in Fig. 8.7 is much simpler than that for an externally polarized microphone, shown in Fig. 5.18, because the electret provides both the polarization for the capsule and the bias for the FET.” with “The circuit for an electret microphone shown in Fig. 8.7 is simpler than that for an externally polarized microphone, shown in Fig.
5.18, because the electret provides the polarization for the capsule, although the bias for the FET usually settles to zero due to leakage.”

P. 402, last line before heading 8.6: Replace “[18, 20]” with “[18, 19]”.

P. 404, Eq. (8.12): Replace “$s_i - w_i$” with “$S_i - W_i$”.

P. 415, 3rd line from top: Delete “power available”.

P. 415, Eq. (9.20): Insert “100” in numerator so that
$$E_{\beta} = \frac{100B^2l^2G_{MC}}{R_E + B^2l^2G_{MC}}.$$

P. 418, 11th line from top: Delete “a”.

P. 418, 20th line from top: Replace “[5]” with “[4]”.

P. 420, Eq. (9.29): Replace 1st line of equation with
$$\tilde{u}(x) = -\frac{1}{jk\rho_0c} \frac{\partial}{\partial x} \tilde{p}(x) .$$

P. 421, 1st line from top: Replace “Eqs. (75) and (112)” with “Eqs. (75) and (111)”.

P. 421, Eq. (9.36): Replace 1st line of equation with
$$\tilde{u}(x) = -\frac{1}{jk\rho_0c} \frac{\partial}{\partial x} \tilde{p}(x) .$$

P. 425, last line before Eq. (9.52): Replace “exponential” with “hyperbolic”.

P. 439, 3rd line after heading “Example 9.3. Low-frequency horn design.”: Replace “Fig. 9.17” with “Fig. 10.17”.

P. 439, last line before last equation before Fig. 9.17: Replace “The flare constant in equals” with “The flare constant m equals”.

P. 439, “=“ missing from last equation before Fig. 9.17: “$m = \frac{4\pi f_c}{c} = \frac{4\pi \times 40}{344.8} = 1.44 \text{ m}^{-1}$”.

P. 440, 2nd equation: Replace “$G_{MT} = \frac{S_T}{\rho_0 S_B^2}$” with “$G_{MT} = \frac{S_T}{\rho_0 c S_B^2}$”.

P. 440, 1st and 2nd lines after 3rd equation (for E_{β}): Replace both instances of “PAE” with “E_{β}”.

P. 446: Replace equation for S_T with

$$S_T = 4R_T^2 \left\{ \arctan \left(\frac{\tan \frac{\pi}{12} \tan \frac{\pi}{6}}{\sec^2 \frac{\pi}{12} + \sqrt{\sec^2 \frac{\pi}{12} + \tan^2 \frac{\pi}{6}}} \right) + \arctan \left(\frac{\tan \frac{\pi}{12} \tan \frac{\pi}{6}}{\sec^2 \frac{\pi}{6} + \sqrt{\sec^2 \frac{\pi}{6} + \tan^2 \frac{\pi}{12}}} \right) \right\}$$

$$= 4 \times 0.022^2 \times 0.13 = 2.52 \text{ cm}^2$$
P. 452, Eq. (10.7): Replace “P_{n_i,n_j,n_k}” with “p_{n_i,n_j,n_k}”.

P. 453: Replace both equations with “$\theta_{1,1,0} = \arctan \frac{l_x}{l_y} = \arctan \frac{4}{3} = 53.1^\circ$” and “$\theta_{3,2,0} = \arctan \frac{2l_x}{3l_y} = \arctan \frac{8}{9} = 41.6^\circ$”.

P. 454: Replace both equations with “$\theta_{1,1,0} = \arctan \frac{l_y}{l_x} = \arctan \frac{3}{4} = 36.9^\circ$” and “$\theta_{3,2,0} = \arctan \frac{3l_y}{2l_x} = \arctan \frac{9}{8} = 48.4^\circ$”.

P. 456, caption to Fig. 10.4: Following “(b) one wall absorbent” add “where $R_d/3 \approx \rho_\infty$.”

P. 458, Eq. (10.13), Replace “R_f” with “R_{d_f}”.

P. 459, 1st line after Eq. (10.15): Replace “Eq. (44)” with “Eq. (43)”.

P. 460, 1st line from top: Replace “Eq. (43)” with “Eq. (42)”.

P. 461, after Eq. (10.28): Replace “Eq. (43)” with “Eq. (42)”.

P. 461, last line: Replace “Eq. (44)” with “Eq. (43)”.

P. 463, Eq. (10.40): Replace “$|P_n|$” with “$|p_n|$”.

P. 470, Eq. (10.45): Replace “In” with “ln”.

P. 470, Eq. (10.46): Replace “In” with “ln”.

P. 471, Eq. (10.49): Replace “In” with “ln” and “log” with “log$_{10}$”.

P. 472, Eq. (10.56): Replace “In” with “ln” and “log” with “log$_{10}$”.

P. 489, 5th line after heading 12.3: Replace “rotationally” with “axially”.

P. 490, 3rd line after Eq. (12.12): Replace “\tilde{P}_s” with “\tilde{p}_s” and “\tilde{P}_l” with “\tilde{p}_l”.

P. 490, Eq. (12.15): Insert “=” after “$h^{(2)}_n(kR)$”.

P. 491, Eq. (12.17): Replace “$h^{(2)}_n(kR)$” with “$h^{(2)}_n(kr)$”.

P. 491, 3rd line after Eq. (12.17): Replace “$r = \sqrt{w^2 + z^2}$” with “$r = \sqrt{w^2 + z^2}$”
and “cosθ = Z/√w² + z²” with “cosθ = z/√w² + z²”.

P. 491, Eq. (12.18): Replace “f(2) n” with “h(2) n”.

P. 492, 1st line after Fig. 12.3: Replace “D(r, θ)” with “D(θ)”.

P. 495, Eq. (12.32): Insert “=” after “h(2) n(kR)”.

P. 497, 1st line after Eq. (12.35): Replace “D(r, θ)” with “D(θ)”.

P. 497, Eq. (12.36): Replace “h(1) n” with “h(2) n”.

P.498, Fig. 12.10: Exchange “D(π)” and “D(0)”.

P.499, Fig. 12.11: Exchange “D(π)” and “D(0)”.

P. 499, 4th line after Fig. 12.11: Replace “in the plot for d = 2R,” with “In the plot for d = 2R,”.

P. 500, Eq. (12.42): Replace “h(1) n” with “h(2) n”.

P. 500, 3rd line after Eq. (12.42), Replace “Eqs. (67) and (68)” with “Eqs. (66) and (67)”.

P. 501, Eq. (12.45): Replace “e jkr” with “e −jkr”.

P. 504, after Eq. (12.51): Insert “of Eq. (2.4a)” between “condition” and “gives”.

P. 505, 2nd line from top: Replace “Eq. (12.41)” with “Eq. (12.52)”.

P. 505, Eq. (12.53): Replace “h(1) n” with “h(2) n”.

P. 505, 1st line after Eq. (12.56), Replace “Eqs. (67) and (69) in Appendix II” with “Eqs. (66) and (68) in Appendix II”.

P. 505, 2nd line after Eq. (12.56): Replace “n = 0 and 1 in Eq. (69)” with “n = 0 and 1 in Eq. (68)”.

P. 505, 4th line after Eq. (12.56): Replace “use Eq. (70) from Appendix II” with “use Eq. (69) from Appendix II”.

P. 505, Eq. (12.57): Replace “h(1) 0” with “h(2) 0” and “h(1) 1” with “h(2) 1”.

P. 505, Eq. (12.57), Replace “ρ” with “ρ(0)”.

P. 506, Eq. (12.59): Replace “h(1) 1” with “h(2) 1”.

P. 506, Eq. (12.60): Replace “Re e jkr” with “Re e jkr”.

P. 506, Eq. (12.60), Replace first instance of “(2n + 1)” with “(2n + 2)”.
P. 507, Eq. (12.61): Replace “h_2^0” with “$h_2^{(2)}$”.

P. 507, Replace Eq. (12.62) with

$$\tilde{F} = R^2 \int_0^{2\pi} \int_0^\alpha \tilde{p}(R, \theta) \cos \theta \sin \theta d\theta d\phi$$

P. 508, Replace Fig. 12.19 with

P. 508, 1st line after Fig. 12.19: Replace “equation (70)” with “Eq. (68) from Appendix II”.

P. 508, Replace Eq. (12.63) with

$$Z_s = \frac{\tilde{F}}{U_0} = j\rho_0 c \left(\frac{\sin^2 \alpha h_0^{(2)}(kR)}{4h_1^{(2)}(kR)} - \frac{(1 - \cos^3 \alpha)^2 h_1^{(2)}(kR)}{\sin^2 \alpha \left(h_0^{(2)}(kR) - 2h_2^{(2)}(kR) \right)} \right)$$

$$- \sum_{n=2}^{\infty} \frac{(2n+1)^2 \left(\sin \alpha P_n(\cos \alpha) + \cos \alpha P_n'(\cos \alpha) \right)^2 h_n^{(2)}(kR)}{(n-1)^2(n+2)^2 \left(n^2 h_n^{(2)}(kR) - (n+1)h_{n+1}^{(2)}(kR) \right)}$$

P. 508, Replace “When $\alpha = \frac{1}{2}\pi$, the second term simplifies to that for an oscillating sphere, as described in Par. 4.15, and the expansion vanishes so that Eq. (12.63) simplifies to” with “When $\alpha = \frac{1}{2}\pi$, the odd terms of the expansion vanish, except for the second term, which simplifies to that for an oscillating sphere, as described in Sec. 4.15. Hence, Eq. (12.63) simplifies to”

P. 508: Replace Eq. (12.64) with
\[Z_s \bigg|_{\alpha = \frac{\pi}{2}} = \rho_0 c \left(\frac{k^4 R^4 + j(k^4 R^4 + 2kR)}{3(k^4 R^4 + 4)} - j \sum_{n=0}^{\infty} \frac{(4n+1)^2 \left(P_{2n}(0) \right)^2 h^{(2)}_{2n}(kR)}{(2n-1)^2(2n+2)^2 \left(2n h^{(2)}_{2n-1}(kR) - (2n+1) h^{(2)}_{2n}(kR) \right)} \right) \]

P. 513, Eq. (12.81): Replace \(h_n^{(1)} \) with \(h_n^{(2)} \).

P. 513, 1st line after Eq. (12.81): Replace “Eq. (12.51)” with “Eq. (12.71)”.

P. 513, 1st line after Eq. (12.82): Replace “the dome effective area given by Eq. (12.49)” with “the cap effective area given by Eq. (12.69)”.

P. 513, Eq. (12.85): Replace \(D(0, \phi) \) with \(D(0, 0) \).

P. 513, 2nd line after Eq. (12.85): Replace “[from Eq. (12.85)]” with “[from Eq. (13.83)]”.

P. 515, 1st line from top: Replace “Eq. (12.49)” with “Eq. (12.69)”.

P. 515, 2nd line from top: Replace “plotted in Fig. 12.19 where” with “given by”.

P. 516: Replace Eq. (12.92) with \(\tilde{u}_r(R, \theta) = \frac{1}{-jk \rho_0 c} \cdot \left. \frac{\partial}{\partial r} \tilde{p}(r, \theta) \right|_{r=R} = 0, \quad \alpha < \theta \leq \pi, \quad r = R \)

P. 516, 2nd line after Eq. (12.97): Replace “Eq. (66)” with “Eq. (65)”.

P. 517, 1st line after Eq. (12.108): Replace “Eq. (71)” with “Eq. (70)”.

P. 521, Eq. (12.118), Replace “\(p(r, \theta) \)” with “\(\tilde{p}(r, \theta) \)”.

P. 522, 2nd line after Eq. (12.125): Replace “Eq. (66)” with “Eq. (65)”.

P. 523, Eq. (12.130), Replace “\(p_n^j(\alpha) \)” with “\(p_n^j(\cos \alpha) \)”.

P. 523, 1st line after Eq. (12.130): Replace “Eqs. (67) and (69)” with “Eqs. (66) and (68)”.

P. 523, Eq. (12.133), Delete “\(j \)” from the denominator.

P. 524, 1st line after Eq. (12.137): Delete “can”.

P. 524, 1st line after Eq. (12.138): Replace “\(kR \)” with “\(ka \)”.

P. 525, 1st line after Eq. (12.139): Replace “\(kR \)” with “\(ka \)”.

P. 525, Replace Eq. (12.140) with \(\tilde{F} = R^2 \int_0^{2\pi} \int_0^\alpha \tilde{p}(R, \theta) \cos \theta \sin \theta \, d\theta \, d\phi \).

P. 525, 1st line after Eq. (12.140): Replace “Eq. (70)” with “Eq. (68)”.
P. 525, Replace Eq. (12.141) with \[Z_s = \frac{\tilde{F}}{U_0} = \frac{2\rho_0 c}{\sin^2 \alpha} \sum_{n=0}^{N} A_n h_n^{(2)}(kR)K_n. \]

P. 526, Replace Fig. 12.29 with

![Graph with normalized impedance and impedance analogy](image)

P. 527, Eq. (12.144), Replace “p(r, \theta)” with “\(\tilde{p}(r, \theta)\)”.

P. 527, Eq. (12.145), Replace “\(\tilde{p}_I\)” with “\(\tilde{p}_I\)”.

P. 527, Eq. (12.146): Replace “\(j_n\)” with “\(j'_n\)”.

P. 528, 2nd line after Eq. (12.147): Replace “has to match on” with “has to match that on”.

P. 529, Eq. (12.158): Replace “\(P_n(\cos \theta)\)” with “\(P_n'(\cos \theta)\)”.

P. 529, Eq. (12.161): Replace “\(P_n(\cos \theta)P_n'(\cos \theta) - P_m(\cos \alpha)P'_m(\cos \alpha)\)” with “\(P_n(\cos \alpha)P_n'(\cos \alpha) - P_n(\cos \alpha)P'_m(\cos \alpha)\)”.

P. 530, 1st line from top: Replace “Eqs. (67), (69), and (71)” with “Eqs. (66), (68), and (70)”.

P. 531, 1st line after Eq. (12.167): Replace “\(kR\)” with “\(ka\)”.
P. 531, Eq. (12.168): Replace “\(D(\theta) \)” with “\(D(0) \)”.

P. 531, 1\(^{st}\) line after Eq. (12.168): Replace “\(kR \)” with “\(ka \)”.

P. 532, Replace Eq. (12.169) with
\[
\tilde{F} = R^2 \int_0^{2\pi} \int_0^\alpha \tilde{p}(R, \theta) \cos \theta \sin \theta \ d\theta \ d\phi.
\]

P. 532, 1\(^{st}\) line after Eq. (12.169): Replace “Eq. (70)” with “Eq. (68)”.

P. 532, Replace Eq. (12.170) with
\[
Z_s = \frac{\tilde{F}}{U_0} = \frac{2\rho_0 \epsilon}{\sin^2 \alpha} \sum_{n=0}^{N} j_n(kR) L_n.
\]

P. 532, Replace Fig. 12.33 with

![Graph](image_url)

P. 539: Replace Eq. (13.19) with “\(\delta(r - r_0) = \delta(r_0 - r) \)”.

P. 540, Eq. (13.28): Insert “\(-\)” after “\(=\)”.

P. 541, Eq. (13.29): Delete “\(-\)\(\tilde{p}_V(r)/2\)”.

P. 541: Replace Eq. (13.30) with “\(\tilde{p}(r) \big|_{r \neq r_0} = 0, \quad \tilde{p}_s(r) = -\tilde{p}_t(r), \quad \left\{ \begin{array}{l} \tilde{p}_m(r) = \tilde{p}_f(r) = -\tilde{p}_V(r)/2 \\ \text{if planar infinite surface} \end{array} \right. \)”.

P. 541, following Eq. (13.31): Replace “where” with “where \(R \) is the Euclidean distance, which is given by”

P. 542, 4\(^{th}\) line from top: Replace “waves are converging” with “waves converge towards them”.

P. 542, 14\(^{th}\) line after Eq. (13.34): Replace “Sec. 13.20” with “Sec. 13.19”.

P. 542, 4\(^{th}\) line from bottom: Replace “non-integral” with “Euclidean”.

P. 542, 3\(^{rd}\) line from bottom: Replace both instances of “integral” with “Fourier”.

P. 542, 4\(^{th}\) line from bottom: Replace “waves are converging” with “waves converge towards them”.

P. 542, 14\(^{th}\) line after Eq. (13.34): Replace “Sec. 13.20” with “Sec. 13.19”.

P. 542, 4\(^{th}\) line from bottom: Replace “non-integral” with “Euclidean”.

P. 542, 3\(^{rd}\) line from bottom: Replace both instances of “integral” with “Fourier”.
P. 543, 1st line after Eq. (13.38): Replace “Eq. (155)” with “Eq. (154)”.
P. 543, 1st line after Eq. (13.40): Replace “integral” with “Fourier”.
P. 545, 2nd line after Eq. (13.49): Replace “non-integral” with “Euclidean”.
P. 545, 2nd line after Eq. (13.52): Replace “integral” with “Fourier”.
P. 545, 3rd line after Eq. (13.52): Replace “$k_y = k_w \cos \varphi$” with “$k_y = k_w \sin \varphi$”.
P. 545, last line before Eq. (13.53): Replace “Eq. (47)” with “Eq. (46)”.
P. 546, 1st line from top: Replace “Eq. (111)” with “Eq. (110)”.
P. 546, Eq. (13.60): Insert “+” between “$\cos(\phi - \phi_0)$” and “$\cos \theta$”.
P. 546, last line: Replace “non-integral” with “Euclidean”.
P. 547, Eq. (13.61), Replace “$2 - \delta_{m0}$” with “$(2 - \delta_{m0})$”.
P. 547: Replace sentence following Eq. (13.63) with “Like the Fourier Green’s functions in rectangular and cylindrical coordinates, this expansion form in spherical coordinates can be applied to reverse problems (see Ref. [41], pp. 210-211, Eqs. (6.107)-(6.110) for compact Kirchhoff-Helmholtz integrals. Note that G_N and G_D are not equivalent to the Green’s function given by Eq. (13.61) above or its normal derivative but can be derived from it using the method we shall apply in Sec. 13.5)”
P. 549, Eq. (13.73): Replace “j_2'” with “j_n'”.
P. 549, 1st line after Eq. (13.76): Replace “Eqs. (67) and (70)” with “Eqs. (66) and (69)”.
P. 550, 1st line after Eq. (13.80): Replace “Eqs. (67) and (70)” with “Eqs. (66) and (69)”.
P. 551, 1st line from top: Replace “$\sin^2 \alpha/2$” with “$\sin^2 \alpha/2$”.
P. 551, Eq. (13.86): Replace “$\left(p_n^{-1}(\cos \alpha)\right)^2$” with “$\left(p_n^{-1}(\cos \alpha)\right)^2$”.
P. 555, 2nd and 3rd lines after Eq. (13.100): Replace “Eqs. (77) and (96)” with “Eqs. (76) and (95)”.
P. 555, Eq. (13.101): Replace “\vec{u}” with “\vec{u}_0”.
P. 556, In caption to Fig. 13.5: Replace “ω” with “$2\pi f a$”.
P. 557, Eq. (13.106): Replace “$\frac{k^2 a^2}{4}$” with “$-\frac{k^2 a^2}{4}$”.
P. 561, 1st line from top: Replace “Eq. (96)” with “Eq. (95)”.
P. 561, Eq. (13.114): Replace “i” with “j” in both instance.
P. 561, last line before Eq. (13.115): Replace “Eq. (96)” with “Eq. (95)”.

P. 561, 1st line after Eq. (13.118), Replace “Eqs. (72) and (126)” with “Eqs. (71) and (125)”.

P. 564, In caption to Fig. 13.9: Replace “ω” with “2πfa”.

P. 565, In Eq. (13.131): Delete “2”.

P. 566, Eq. (13.142): Replace “ρc” with “ρ₀c₀”.

P. 567, Caption to Fig. 13.10: Delete “ρ is the density of the acoustic medium and c is the speed of sound in that medium”.

P. 569, Eq. (13.144): Replace “E(w²/a²)” with “E(w²/a²)”.

P. 569, Eqs. (13.144) and (13.145): Replace all instances of “ρc” with “ρ₀c₀”.

P. 569, last line before Eq. (13.145): Replace “Eq. (96)” with “Eq. (95)”.

P. 571, 2nd and 3rd lines after Fig. 13.14: Replace “(see Fig. 13.45 and Fig. 13.46 respectively)” with “(see Fig. 4.35 and Fig. 4.36 respectively)”.

P. 573, 5th line after Eq. (13.159): Exchange “n + ½” and “n – ½”.

P. 573, Eq. (13.160): Replace “w₀” with “w₀”.

P. 573, 2nd and 3rd lines after Eq. (13.160): Replace “Inserting Eqs. (13.52), (13.158), (13.159), and (13.99) into” with “Inserting Eqs. (13.52), (13.158), and (13.159) into”.

P. 573, last line before Eq. (13.161): Replace “Eq. (97)” with “Eq. (96)”.

P. 573, Eq. (13.161): Replace “wkw” with “k₊w” and “ak₊” with “k₊a”.

P. 574, Eq. (13.166): Replace “I₉ₚ(w) =” with “I₉ₚ(w) =”.

P. 574, Eq. (13.167): Replace “k₊W” with “k₊w”.

P. 575, 3rd line after Eq. (13.177): Replace “Eqs. (77) and (97)” with “Eqs. (76) and (96)”.

P. 576, Eq. (13.182): Replace “i” with “j”.

P. 577, 6th line from top: Replace “Eq. (13.28)” with “Eq. (13.27)”.

P. 577, In caption to Fig. 13.16: Replace “ω” with “2πfa”.

P. 578, Eq. (13.184): Replace “k²a²/4” with “k²a²/4”.

P. 578, 1st line after Eq. (13.187): Replace “Eq. (110)” with “Eq. (109)”.
P. 580, 4th line after Fig. 13.18: Delete “and again using the integral of Eq. (96) from Appendix II”.

P. 580, Eq. (13.191): Replace “∑_{m=0}^{M} r_m” with “∑_{n=0}^{N} A_n”.

P. 580, Eq. (13.192): Insert “=” just before “G_s + jB_s”.

P. 580, 1st line after Eq. (13.192): Delete “= \pi a^2 \bar{u}_0”.

P. 581, Eq. (13.196): Replace “− j \frac{G_s}{G_s^2 + B_s^2}” with “− j \frac{B_s}{G_s^2 + B_s^2}”.

P. 584, 3rd line from top: Delete “second term or” and “part”.

P. 584, 3rd line after Eq. (13.203): Replace “Eq. (97)” with “Eq. (96)”.

P. 586, Eqs. (13.219) and (13.221): Replace “+” with “−”.

P. 586, Eq. (13.223): Replace “nB_p” with “mB_p”.

P. 587, Eqs. (13.226), (13.227), and (13.231): Replace “nB_p(kb) − j mS_p(kb)” with “nB_p(kb) + j mS_p(kb)”.

P. 587, Eq. (13.232): Replace “− j” with “+ j”.

P. 588, 3rd line after Eq. (13.233): Replace “Eqs. (77) and (97)” with “Eqs. (76) and (96)”.

P. 590, In caption to Fig. 13.23: Replace “\omega” with “2\pi \omega”.

P. 590, Eq. (13.239): Delete “2”.

P. 590, Eq. (13.240): Replace “i” with “j”.

P. 591, In captions to Fig. 13.24: Replace “\omega” with “2\pi \omega”.

P. 592, 1st line after Eq. (13.243): Replace “Eq. (110)” with “Eq. (109)”.

P. 599, In caption to Figs. 13.31 & 13.32: Replace “\omega” with “2\pi \omega”.

P. 604, 8th line after Fig. 13.37: Replace “an infinite baffle” with “an infinite rigid baffle”.

P. 605, Eq. (13.258): Replace “\rho c” with “\rho_{0c}”.

P. 606, Eq. (13.260): Replace “\rho c” with “\rho_{0c}”.

P. 609, Eq. (13.268): Replace “\rho c” with “\rho_{0c}”.

P. 610, 2nd line after Eq. (13.272): Replace “\mu” with “k_w”.

P. 612, Eq. (13.281): Replace with

\[W = \left| \frac{\tilde{U}_0}{\sqrt{2}} \right|^2 R_{AR} = \frac{l}{2\rho_0 c} \left[\frac{1}{2} \right] \int_{\pi}^{\pi} \frac{\tilde{p}(r, \theta)}{\sqrt{2}} rd\theta \bigg|_{r \to \infty} \]

P. 613, Eq. (13.285): Replace “In” with “ln”.

P. 616, 1st line after Eq. (13.305): Replace “Eq. (77)” with “Eq. (76)”.

P. 617, 2nd line from top: Replace “f(k_0)” with “f(w_0)”.

P. 617, 1st line after Eq. (13.309): Replace “Eq. (96)” with “Eq. (95)”.

P. 621, 2nd line from top: Replace “Eqs. (47) and (51)” with “Eqs. (46) and (50)”.

P. 621, Eqs. (13.328) and (13.329): Replace “g_{m,n}(q)” with “g_{m,n}”.

P. 623, 1st line after Eq. (13.333): Replace \(\mu = k \sin \theta’ \) with \(k_w = k \sin \theta’ \).

P. 624, 2nd line after Fig. 13.45: Replace “Eq. (78)” with “Eq. (77)”.

P. 625, Eq. (13.336): Replace “s\sqrt{1-s}” with “s\sqrt{1-s^2}”.

P. 625, Eq. (13.338): Replace “i” with “j”.

P. 626, 1st line after Fig. 13.47: Replace “Eqs. (97), (98), and (99)” with “Eqs. (96), (97), and (98)”.

P. 626, 1st line after Eq. (13.339): Replace “Eq. (134)” with “Eq. (133)”.

P. 627, 3rd line before Eq. (13.342): Replace “integral” with “Fourier”.

P. 634, 5th line after Eq. (14.2): Delete “current-source equivalents of the”.

P. 637, top of page: Replace “Table 6.1” with “Table 14.1”.

P. 640, 1st line after Table 14.2: Replace “[9]” with “[8]”.

P. 648, Eq. (14.64): Replace “− 1/L_1” with “− 1/L_2”.

P. 648, heading 14.8: Replace “[10]” with “[9]”.

P. 649, Eq. (14.70): Replace with

\[P_2 = \frac{1}{L_4 C_1} + \frac{1}{L_2 C_1} + \frac{1}{L_2 C_2} + \frac{R_1 + R_2}{R_1 R_2 C_1 L_2} \]

P. 649, Eq. (14.74): Replace “p_3s + p_4” with “P_3s + P_4”.

P. 652, 2nd line after heading 14.10: Replace “current sources” with “a current source”.

P. 658, Eq. (14.125): Replace “R_2” with “R_3”.

P. 659, Eq. (14.134): Replace “R_3” with “R_4”.

P. 660, heading 14.11: Replace “[8]” with “[9]”.

P. 661, Eq. (14.147): Replace “R_2 + R_3” with “R_2 + R_4”.

P. 662, Eq. (14.157): Replace “− 1/L_2” with “− 1/L_1”.

P. 663, Eq. (14.167): Replace “R_2 + R_3” with “R_2 + R_4”.
P. 661, 1st line after Eq. (14.140): Replace “Eqs. (14.121) and (14.139)” with “Eqs. (14.121) and (14.140)”.

P. 661, last sentence: Replace “characteristics of the transformer respectively” with “characteristics respectively of the transformer”.

P. 667, Eq. (14.164): Replace “$P_{Ti 1}$”, “$S_{Ti 1}$”, “$P_{Gi 1}$”, and “$S_{Gi 1}$” with “$S_{VV i 1}$”, “$S_{CC i 1}$”, “$S_{VC i 1}$”, and “$S_{VC i 2}$” respectively.

P. 668, Eq. (14.167): Add “−” sign to $M_{33(6,6)}$ and $M_{33(7,7)}$.

P. 680, Eq. (70): Replace integral limits “0” and “α” to “α” and “π” respectively.

P. 680, In Eq. (70), replace “$P_n(\cos \alpha)P'_m(\cos \alpha) − P_m(\cos \alpha)P'_n(\cos \alpha)$” with “$P_m(\cos \alpha)P'_n(\cos \alpha) − P_n(\cos \alpha)P'_m(\cos \alpha)$”.

P. 683, Eq. (97): Change lower limit of integral from 0 to a.

P. 684, Eq. (101): Replace “$\alpha_{kn} \neq \alpha_{kn}$” with “$\alpha_{km} \neq \alpha_{kn}$”.

P. 686, Eq. (125): Replace “1” with “$(-1)^m$”.

P. 688, Eq. (147): Insert “−” sign after “=”.

P. 688, Eq. (152): Replace “x” with “z”.

P. 384, Replace Eq. (7.179) with

$$f_0 = \sqrt{8c/(2\pi a)}$$

P. 385-386: Replace Example 7.4 with the following simpler corrected version:

Example 7.4. Crossover for woofer of Example 7.2. In this example we shall implement a 3rd-order Butterworth high-pass filter using a series capacitor for the 1st-order section and the native response of the tweeter for the 2nd-order section. Because the tweeter will be mounted in a sphere, we shall design a crossover to compensate for the 6 dB lift associated with a point source in a sphere (see Fig. 7.14) so that it provides part of the 1st-order section. The low-pass section will be designed to give an all-pass overall response with zero phase shift, as discussed in the previous section. Hence the low-pass section will use
just a series inductor together with the 6 dB lift due to the baffle effect, using a closed-back piston as a model (see Fig. 7.15). Since the woofer occupies almost the full width of the box, we will take \(a \) as 9.4 cm which, using Eq. (7.179), gives us a crossover frequency of

\[
f_0 = 2.24 \times 344.8/(2 \times 3.14 \times 0.094) = 1305 \text{ Hz}
\]

Hence the value of the series inductance needed is

\[
L_s = \frac{R_E}{2\pi f_0} = \frac{6.27}{2 \times 3.14 \times 1305} = 0.766 \text{ mH}
\]

However, the coil inductance is 0.71 mH, so to make up the difference we will use an inductor with a value of \(0.766 - 0.71 = 56 \mu\text{H} \). Next we need to choose a tweeter suitable for a crossover frequency of 1305 Hz. The SEAS model 27TFF (H0831) has a resonance frequency of \(f_c = 1200 \text{ Hz} \), which is close enough. The effective area of the dome is \(S_D = 7.5 \text{ cm}^2 \). The maximum sound pressure of the woofer has already been specified as 99.6 dB SPL at a distance of \(r = 1 \text{ m} \). At the crossover frequency \(f_0 \), the sound pressure produced by the tweeter is 3 dB less than this, that is 96.6 dB SPL, and decreases at a rate of 18 dB/octave below \(f_0 \). The peak displacement at \(f_0 \) is obtained from Eq. (6.35) to give

\[
\eta_{\text{peak}} = \sqrt{2r} \times 10^{\frac{\text{SPL}}{20}} \times \frac{\pi f_{0}^{2} \rho_0 S_{D}}{3.14 \times 1305^2 \times 1.18 \times 7.5 \times 10^{-4}} = 0.2 \text{ mm}
\]

which is within the linear excursion limit of 0.5 mm and at frequencies above and below \(f_0 \) the displacement is reduced. Using the method described in Sec. 6.10 for measuring the Thiele-Small parameters, we estimate the \(Q \) factors from the impedance curve to be

\[
Q_{EC} = \frac{\omega_K M_{MD} R_{ESl}(Bl)^2}{2\pi} = 2\pi \times 1200 \times 0.0003 \times 4.8/3.5^2 = 0.89
\]

\[
Q_{MC} = \frac{\omega_K M_{MD} R_{ESl}(Bl)^2}{2\pi} = 2\pi \times 1200 \times 0.0003 \times 10.2/3.5^2 = 1.88
\]

Also, the quoted sensitivity is 92 dB SPL in a baffle at 1 m with an input voltage of 2.83 Vrms (or 86 dB SPL in free space). However, the woofer has a sensitivity of 79.6 dB SPL in free space, so the tweeter needs a series resistor to match its sensitivity to that of the woofer. If \(R_E = 4.8 \Omega \), then the series resistor value is

\[
R_s = R_E \left(10^{(\text{TweeterSensitivity} - \text{WooferSensitivity})/20} - 1\right)
\]

\[
= 4.8 \times (10^{(92-79.6)/20} - 1) = 15.2 \Omega \approx 15 \Omega
\]

This will modify the values of \(Q'_{EC} \) and \(Q'_{TC} \) as follows

\[
Q'_{EC} = \left(1 + \frac{R_s}{R_E}\right) Q_{EC} = \left(1 + \frac{15}{4.8}\right) \times 0.89 = 3.67
\]

\[
Q'_{TC} = Q'_{EC} Q_{MC} / (Q'_{EC} + Q_{MC}) = 1.24
\]
which is close enough to unity for a 3rd-order Butterworth response. We need to correct for the 6 dB lift in the response of the tweeter due to the baffle effect. We will simplify this by mounting the tweeter on a wooden sphere so that we can model it as a point source on a sphere of radius \(R \). Then the transfer function of the point source on a sphere from Eq. (7.36) (producing a 6 dB lift) provides the shelf filter response

\[
\frac{s + c/R}{s + 2c/R} = \frac{s + \omega_b}{s + \omega_0}
\]

where the radius of the sphere is given by

\[
R = 2c/\omega_0 = 344.8/(3.14 \times 1305) = 84.1 \text{ mm}
\]

Thus the 6 dB transition takes place between \(f_E = f_0/2 = 1305/2 = 653 \text{ Hz} \) and \(f_0 = 1305 \text{ Hz} \) with a 1st-order slope. Hence we need the series capacitor to continue the 1st-order slope from \(f_E \) downwards and its value is determined by

\[
C_1 = \frac{1}{2\pi f_E (R_e + R_i)} = \frac{1}{2 \times 3.14 \times 653 \times (4.8 + 15)} = 12.3 \mu\text{F} \approx 12 \mu\text{F}
\]

The network is shown in Fig. 7.51.

P. 386: Replace Figure 7.51 with:

![Diagram of crossover network](image)

Fig. 7.51. Crossover network of Example 7.4 with a crossover frequency of \(f_0 = 1305 \text{ Hz} \). The values of the crossover circuit elements are \(R_1 = 15 \Omega (25 \text{ W}), L_1 = 56 \mu\text{H}, \) and \(C_1 = 12 \mu\text{F} \). The woofer is a Bandor type 100DW/8A mounted in a closed-box baffle as described in Example 7.2 and shown Fig. 7.18. The tweeter is a SEAS type 27TFF (H0831) mounted in a 16 cm diameter sphere.